{ "name": "mood sad", "type": "multi-class classifier", "link": "https://essentia.upf.edu/models/classifiers/mood_sad/mood_sad-musicnn-msd-2.pb", "version": "1", "description": "classification of music by mood (sad/non-sad)", "author": "Pablo Alonso", "email": "pablo.alonso@upf.edu", "release_date": "2020-07-07", "framework": "tensorflow", "framework_version": "1.15.0", "classes": [ "non_sad", "sad" ], "model_types": [ "frozen_model" ], "dataset": { "name": "In-house MTG collection", "citation": "@inproceedings{laurier2009music,\n title={Music mood annotator design and integration},\n author={Laurier, Cyril and Meyers, Owen and Serra, Joan and Blech, Martin and Herrera, Perfecto},\n booktitle={2009 Seventh International Workshop on Content-Based Multimedia Indexing},\n pages={156--161},\n year={2009},\n organization={IEEE}\n}", "size": "230 full tracks + excerpts, 96/134 per class", "metrics": { "5-fold_cross_validation_normalized_accuracy": 0.86 } }, "schema": { "inputs": [ { "name": "model/Placeholder", "type": "float", "shape": [ 187, 96 ] } ], "outputs": [ { "name": "model/Sigmoid", "type": "float", "shape": [ 1, 2 ], "op": "Sigmoid", "output_purpose": "predictions" }, { "name": "model/dense_2/BiasAdd", "type": "float", "shape": [ 1, 2 ], "op": "fully connected", "description": "logits", "output_purpose": "" }, { "name": "model/dense_1/BiasAdd", "type": "float", "shape": [ 1, 100 ], "op": "fully connected", "description": "penultimate layer", "output_purpose": "" }, { "name": "model/dense/BiasAdd", "type": "float", "shape": [ 1, 200 ], "op": "fully connected", "output_purpose": "embeddings" } ] }, "citation": "@inproceedings{alonso2020tensorflow,\n title={Tensorflow Audio Models in Essentia},\n author={Alonso-Jim{\\'e}nez, Pablo and Bogdanov, Dmitry and Pons, Jordi and Serra, Xavier},\n booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},\n year={2020}\n}", "inference": { "sample_rate": 16000, "algorithm": "TensorflowPredictMusiCNN" } }