Files
acousticbrainz-ng/models/mood_aggressive-musicnn-mtt-2.json
2025-08-06 15:38:22 -04:00

88 lines
3.0 KiB
JSON

{
"name": "mood aggressive",
"type": "multi-class classifier",
"link": "https://essentia.upf.edu/models/classifiers/mood_aggressive/mood_aggressive-musicnn-mtt-2.pb",
"version": "1",
"description": "classification of music by mood (aggressive/non-aggressive)",
"author": "Pablo Alonso",
"email": "pablo.alonso@upf.edu",
"release_date": "2020-07-07",
"framework": "tensorflow",
"framework_version": "1.15.0",
"classes": [
"aggressive",
"not_aggressive"
],
"model_types": [
"frozen_model"
],
"dataset": {
"name": "In-house MTG collection ",
"citation": "@inproceedings{laurier2009music,\n title={Music mood annotator design and integration},\n author={Laurier, Cyril and Meyers, Owen and Serra, Joan and Blech, Martin and Herrera, Perfecto},\n booktitle={2009 Seventh International Workshop on Content-Based Multimedia Indexing},\n pages={156--161},\n year={2009},\n organization={IEEE}\n}",
"size": "280 full tracks + excerpts, 133/147 per class",
"metrics": {
"5-fold_cross_validation_normalized_accuracy": 0.96
}
},
"schema": {
"inputs": [
{
"name": "model/Placeholder",
"type": "float",
"shape": [
187,
96
]
}
],
"outputs": [
{
"name": "model/Sigmoid",
"type": "float",
"shape": [
1,
2
],
"op": "Sigmoid",
"output_purpose": "predictions"
},
{
"name": "model/dense_2/BiasAdd",
"type": "float",
"shape": [
1,
2
],
"op": "fully connected",
"description": "logits",
"output_purpose": ""
},
{
"name": "model/dense_1/BiasAdd",
"type": "float",
"shape": [
1,
100
],
"op": "fully connected",
"description": "penultimate layer",
"output_purpose": ""
},
{
"name": "model/dense/BiasAdd",
"type": "float",
"shape": [
1,
200
],
"op": "fully connected",
"output_purpose": "embeddings"
}
]
},
"citation": "@inproceedings{alonso2020tensorflow,\n title={Tensorflow Audio Models in Essentia},\n author={Alonso-Jim{\\'e}nez, Pablo and Bogdanov, Dmitry and Pons, Jordi and Serra, Xavier},\n booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},\n year={2020}\n}",
"inference": {
"sample_rate": 16000,
"algorithm": "TensorflowPredictMusiCNN"
}
}