
Parts Inventory Specification

Ahmed Al-Taiar

November 24, 2023

1 Technologies

• Redwood Web Framework

– React

– GraphQL

– Prisma

– TypeScript

– Jest

– Storybook

• TailwindCSS Utility Classes

• DaisyUI Component Library

2 Database

The website’s data will be hosted on a local PostgreSQL server with the exception for the
part images, those will be stored on Filestack.

1

https://redwoodjs.com/
https://tailwindcss.com/
https://daisyui.com/
https://www.postgresql.org/
https://www.filestack.com/


2.1 Schemas

2.1.1 Part

Field Required Type Default Value

ID Yes Int Automatically increment

Name Yes String

Description No String No description provided

Available stock Yes Int 0

Image URL Yes String Local placeholder image path

Date of creation Yes Date Now

Transaction ID Relation No Int

2.1.2 User

Field Required Type Default Value

ID Yes Int Automatically increment

First name Yes String

Last name Yes String

Email address Yes String

Encrypted password Yes String

Password salt Yes String

Password reset token No String

Password reset token expiry date No Date

Role Yes String user

Transactions Yes Transaction[]

2.1.3 Transaction

Field Required Type Default Value

ID Yes Int Automatically increment

Transaction Date Yes Date Now

User ID relation Yes Int

Type Yes TransactionType

Parts Yes Json[]

TransactionType is an enum of values “in” or “out”.

2



3 Account System

Use Redwood’s built in authentication system then generate pages (using the Redwood
command line interface) for signing up, logging in, forgot password, etc. Change the CSS
stylesheets to use DaisyUI components instead, for uniformity across pages.

3.1 Sign Up Page

Modify the sign-up page to include text fields for entering the user’s first and last name,
then include the values in the payload when creating a new account.

4 Part Management

Generate the pages needed to create, retrieve, update, and delete parts using Redwood’s
scaffold generator. Pass in the Part schema as input. Change the CSS stylesheets to use
DaisyUI components instead, for uniformity across pages.

4.1 Part Form

Modify the form for used for creating or updating parts to include Filestack’s image uploader
component instead of a text field for inputting the image URL, use the outputted image URL
from the uploader component in the payload for creating/updating parts.

4.2 Deleting Parts

After a part is deleted, automatically delete the image from Filestack as well.

4.3 Retrieving Parts

When retrieving a part’s image through the image URL, use Filestack’s transformation pa-
rameters to resize the image to the appropriate size in order to conserve bandwidth. Also
create a new GraphQL query, for retrieving parts based on a page and filter, that takes in
the following parameters:

Parameter Required Type Default Value

Page Yes Int

Sort Method Yes SortMethod

Sort Order Yes SortOrder

Search query No String Nothing

SortMethod is an enum of any one of these values:

• ID

3



• Name

• Description

• Available stock

• Date of creation

SortOrder is an enum of any one of these values:

• Ascending

• Descending

5 Basket

5.1 Adding To Basket

When a user adds a part to the basket, save the part as a Json string and also include the
quantity. If the same part is already in the basket, increment the quantity instead. Then
save the entire basket as a string in the browser’s local storage.

5.2 Clearing Basket

Delete the string from the browser’s local storage.

5.3 Deleting From Basket

Delete the part & quantity element based on the index.

5.4 Editing Basket

The quantity of each element can be modified directly in the basket page.

6 Transactions

6.1 Creating Transactions

When a user checks out their order, create a transaction in the database. Save the basket
and its contents, the user’s ID, and date. When the transaction is created, decrement
the available stock of each specified part by the quantity. Then clear the basket from the
browser’s local storage.

4



6.2 Retrieving Transactions

Administrator accounts get access to a second transactions page. It is the exact same as the
normal transactions’ page with the exception that it lists all transactions instead of just the
user’s.

6.3 Returning

Create a new GraphQL mutation which takes the transaction’s ID and user’s ID, and then
marks a transaction’s TransactionType to “in”, then increment the available stock of each
part by the quantity. This mutation can be accessed in the user’s transactions page when
they want to return parts.

7 Miscellaneous

7.1 Theme

Use DaisyUI’s themes and create a theme toggle component in the navigation bar that
switches between light and dark theme. The theme should be saved in the browser’s local
storage so the theme persists across sessions.

7.2 Navigation Bar

On mobile, hide the links on the navigation bar and put them in a list, that is shown with the
press of one button on the navigation bar. It should also have the theme toggle component.

5


	Technologies
	Database
	Schemas
	Part
	User
	Transaction


	Account System
	Sign Up Page

	Part Management
	Part Form
	Deleting Parts
	Retrieving Parts

	Basket
	Adding To Basket
	Clearing Basket
	Deleting From Basket
	Editing Basket

	Transactions
	Creating Transactions
	Retrieving Transactions
	Returning

	Miscellaneous
	Theme
	Navigation Bar


